A new metabolic trait in an acetogen: Mixed acid fermentation of fructose in a methylene-tetrahydrofolate reductase mutant of Acetobacterium woodii

ENVIRONMENTAL MICROBIOLOGY REPORTS(2023)

引用 1|浏览7
暂无评分
摘要
To inactivate the Wood-Ljungdahl pathway in the acetogenic model bacterium Acetobacterium woodii, the genes metVF encoding two of the subunits of the methylene-tetrahydrofolate reductase were deleted. As expected, the mutant did not grow on C1 compounds and also not on lactate, ethanol or butanediol. In contrast to a mutant in which the first enzyme of the pathway (hydrogen-dependent CO2 reductase) had been genetically deleted, cells were able to grow on fructose, albeit with lower rates and yields than the wild-type. Growth was restored by addition of an external electron sink, glycine betaine + CO2 or caffeate. Resting cells pre-grown on fructose plus an external electron acceptor fermented fructose to two acetate and four hydrogen, that is, performed hydrogenogenesis. Cells pre-grown under fermentative conditions on fructose alone redirected carbon and electrons to form lactate, formate, ethanol as well as hydrogen. Apparently, growth on fructose alone induced enzymes for mixed acid fermentation (MAF). Transcriptome analyses revealed enzymes potentially involved in MAF and a quantitative model for MAF from fructose in A. woodii is presented.
更多
查看译文
关键词
fructose,mixed acid fermentation,new metabolic trait,acetogen
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要