Ras-dependent Mitogen-activated Protein Kinase Activation by G Protein-coupled Receptors: CONVERGENCE OF Gi- AND Gq-MEDIATED PATHWAYS ON CALCIUM/CALMODULIN, Pyk2, AND Src KINASE

Journal of Biological Chemistry(1997)

引用 0|浏览0
暂无评分
摘要
Many receptors that couple to heterotrimeric guanine-nucleotide binding proteins (G proteins) have been shown to mediate rapid activation of the mitogen-activated protein kinases Erk1 and Erk2. In different cell types, the signaling pathways employed appear to be a function of the available repertoire of receptors, G proteins, and effectors. In HEK-293 cells, stimulation of either α1B- or α2A-adrenergic receptors (ARs) leads to rapid 5–10-fold increases in Erk1/2 phosphorylation. Phosphorylation of Erk1/2 in response to stimulation of the α2A-AR is effectively attenuated by pretreatment with pertussis toxin or by coexpression of a Gβγ subunit complex sequestrant peptide (βARK1ct) and dominant-negative mutants of Ras (N17-Ras), mSOS1 (SOS-Pro), and Raf (ΔN-Raf). Erk1/2 phosphorylation in response to α1B-AR stimulation is also attenuated by coexpression of N17-Ras, SOS-Pro, or ΔN-Raf, but not by coexpression of βARK1ct or by pretreatment with pertussis toxin. The α1B- and α2A-AR signals are both blocked by phospholipase C inhibition, intracellular Ca2+chelation, and inhibitors of protein-tyrosine kinases. Overexpression of a dominant-negative mutant of c-Src or of the negative regulator of c-Src function, Csk, results in attenuation of the α1B-AR- and α2A-AR-mediated Erk1/2 signals. Chemical inhibitors of calmodulin, but not of PKC, and overexpression of a dominant-negative mutant of the protein-tyrosine kinase Pyk2 also attenuate mitogen-activated protein kinase phosphorylation after both α1B- and α2A-AR stimulation. Erk1/2 activation, then, proceeds via a common Ras-, calcium-, and tyrosine kinase-dependent pathway for both Gi- and Gq/11-coupled receptors. These results indicate that in HEK-293 cells, the Gβγ subunit-mediated α2A-AR- and the Gαq/11-mediated α1B-AR-coupled Erk1/2 activation pathways converge at the level of phospholipase C. These data suggest that calcium-calmodulin plays a central role in the calcium-dependent regulation of tyrosine phosphorylation by G protein-coupled receptors in some systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要