A highly-sensitive sensor based on carbon nanohorns@reduced graphene oxide coated by gold platinum core-shell nanoparticles for electrochemical detection of carbendazim in fruit and vegetable juice.

Food chemistry(2022)

引用 16|浏览5
暂无评分
摘要
Carbendazim (CBZ) is beneficial to fruit and vegetable cultivation, but its residue will cause fruit and vegetable juice pollution. In this work, an electrochemical sensor based on carbon nanohorns@reduced graphene oxide coated by gold platinum core-shell nanoparticles (Au@Pt/CNHs@RGO/GCE) was prepared for CBZ detection. The results showed that the assembly of CNHs and RGO assisted by ultrasound improved the electron transfer ability and electrochemical active surface area of CNHs@RGO. Moreover, the coating of Au@Pt nanoparticles further enhanced the sensitivity of the sensor. With the synergistic effect of the three materials, the sensor had a wider linear range (0.05 μmol/L-50 μmol/L), a lower limit of detection (1.64 nmol/L), and satisfactory recovery rates (90.60 % ∼ 97.60 %, carrot juice; 94.00-114.43 %, orange juice). Additionally, the sensor presented good anti-interference and repeatability. This work provides a simple, rapid, economical, sensitive, and accurate sensor for CBZ quantification in fruit and vegetable juice.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要