Highly efficient multi-resonance thermally activated delayed fluorescence material toward a BT.2020 deep-blue emitter.

Junki Ochi,Yuki Yamasaki, Kojiro Tanaka,Yasuhiro Kondo, Kohei Isayama,Susumu Oda,Masakazu Kondo,Takuji Hatakeyama

Nature communications(2024)

引用 0|浏览0
暂无评分
摘要
An ultrapure deep-blue multi-resonance-induced thermally activated delayed fluorescence material (DOB2-DABNA-A) is designed and synthesized. Benefiting from a fully resonating extended helical π-conjugated system, this compound has a small ΔEST value of 3.6 meV and sufficient spin-orbit coupling to exhibit a high-rate constant for reverse intersystem crossing (kRISC = 1.1 × 106 s-1). Furthermore, an organic light-emitting diode employing DOB2-DABNA-A as an emitter is fabricated; it exhibits ultrapure deep-blue emission at 452 nm with a small full width at half maximum of 24 nm, corresponding to Commission Internationale de l'Éclairage (CIE) coordinates of (0.145, 0.049). The high kRISC value reduces the efficiency roll-off, resulting in a high external quantum efficiency (EQE) of 21.6% at 1000 cd m-2.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要