Intra-oscillator high harmonic source reaching 100-eV photon energy

Optics Express(2024)

引用 0|浏览3
暂无评分
摘要
Resonant enhancement inside an optical cavity has been a wide-spread approach to increase efficiency of nonlinear optical conversion processes while reducing the demands on the driving laser power. This concept has been particularly important for high harmonic generation XUV sources, where passive femtosecond enhancement cavities allowed significant increase in repetition rates required for applications in photoelectron spectroscopy, XUV frequency comb spectroscopy, including the recent endeavor of thorium nuclear clock development. In addition to passive cavities, it has been shown that comparable driving conditions can be achieved inside mode-locked thin-disk laser oscillators, offering a simplified single-stage alternative. This approach is less sensitive to losses thanks to the presence of gain inside the cavity and should thus allow higher conversion efficiencies through tolerating higher intensity in the gas target. Here, we show that the intra-oscillator approach can indeed surpass the much more mature technology of passive enhancement cavities in terms of XUV flux, even reaching comparable values to single-pass sources based on chirped-pulse fiber amplifier lasers. Our system operates at 17 MHz repetition rate generating photon energies between 60 eV and 100 eV. Importantly, this covers the highly attractive wavelength for the silicon industry of 13.5 nm at which our source delivers 60 nW of outcoupled average power per harmonic order.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要