Uncovering Photoelectronic and Photothermal Effects in Plasmon-Mediated Electrocatalytic CO2 Reduction

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2024)

引用 0|浏览0
暂无评分
摘要
Plasmon-mediated electrocatalysis that rests on the ability of coupling localized surface plasmon resonance (LSPR) and electrochemical activation, emerges as an intriguing and booming area. However, its development seriously suffers from the entanglement between the photoelectronic and photothermal effects induced by the decay of plasmons, especially under the influence of applied potential. Herein, using LSPR-mediated CO2 reduction on Ag electrocatalyst as a model system, we quantitatively uncover the dominant photoelectronic effect on CO2 reduction reaction over a wide potential window, in contrast to the leading photothermal effect on H2 evolution reaction at relatively negative potentials. The excitation of LSPR selectively enhances the CO faradaic efficiency (17-fold at -0.6 VRHE) and partial current density (100-fold at -0.6 VRHE), suppressing the undesired H-2 faradaic efficiency. Furthermore, in situ attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) reveals a plasmon-promoted formation of the bridge-bonded CO on Ag surface via a carbonyl-containing C1 intermediate. The present work demonstrates a deep mechanistic understanding of selective regulation of interfacial reactions by coupling plasmons and electrochemistry.
更多
查看译文
关键词
Plasmonic electrocatalysis,CO2 reduction reaction,photoelectronic and photothermal effects,ATR-SEIRAS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要