The DUX4-HIF1α Axis in Murine and Human Muscle Cells: A Link More Complex Than Expected.

Thuy-Hang Nguyen, Maelle Limpens, Sihame Bouhmidi, Lise Paprzycki,Alexandre Legrand,Anne-Emilie Declèves, Philipp Heher,Alexandra Belayew, Christopher R S Banerji,Peter S Zammit,Alexandra Tassin

International journal of molecular sciences(2024)

引用 0|浏览1
暂无评分
摘要
FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent inherited muscle disorders and is linked to the inappropriate expression of the DUX4 transcription factor in skeletal muscles. The deregulated molecular network causing FSHD muscle dysfunction and pathology is not well understood. It has been shown that the hypoxia response factor HIF1α is critically disturbed in FSHD and has a major role in DUX4-induced cell death. In this study, we further explored the relationship between DUX4 and HIF1α. We found that the DUX4 and HIF1α link differed according to the stage of myogenic differentiation and was conserved between human and mouse muscle. Furthermore, we found that HIF1α knockdown in a mouse model of DUX4 local expression exacerbated DUX4-mediated muscle fibrosis. Our data indicate that the suggested role of HIF1α in DUX4 toxicity is complex and that targeting HIF1α might be challenging in the context of FSHD therapeutic approaches.
更多
查看译文
关键词
FSHD,DUX4,HIF1α,myogenesis,skeletal muscle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要