Isradipine therapy in Cacna1dIle772Met/+ mice ameliorates primary aldosteronism and neurologic abnormalities.

JCI insight(2023)

引用 0|浏览9
暂无评分
摘要
Somatic gain-of-function mutations in the L-type calcium channel CaV1.3 (CACNA1D gene) cause adrenal aldosterone-producing adenomas and micronodules. De novo germline mutations are found in a syndrome of primary aldosteronism, seizures and neurologic abnormalities (PASNA) as well as in autism spectrum disease. Using CRISPR/Cas9, we here generated mice with a Cacna1d gain-of-function mutation found in both adenomas and PASNA syndrome (Cacna1dIle772Met/+). These mice show reduced body weight and increased mortality from weaning to approximately 100 days of age. Male mice do not breed, likely due to neuromotor impairment, and the offspring of female mice die perinatally, likely due to lack of maternal care. Mice generated by in vitro fertilization show elevated intracellular calcium in the aldosterone-producing zona glomerulosa, an elevated aldosterone:renin ratio and persistently elevated serum aldosterone on a high-salt diet as signs of primary aldosteronism. Anesthesia with ketamine and xylazine induces tonic-clonic seizures. Neurologic abnormalities include hyperlocomotion, impaired performance in the rotarod test, impaired nest building and slight changes in social behavior. Intracellular calcium in the zona glomerulosa, aldosterone levels and rotarod performance respond to treatment with the calcium channel blocker isradipine, with implications for the therapy of patients with aldosterone-producing lesions and with PASNA syndrome.
更多
查看译文
关键词
primary aldosteronism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要