OSCNet: Orientation-Shared Convolutional Network for CT Metal Artifact Learning

IEEE TRANSACTIONS ON MEDICAL IMAGING(2024)

引用 0|浏览17
暂无评分
摘要
X-ray computed tomography (CT) has been broadly adopted in clinical applications for disease diagnosis and image-guided interventions. However, metals within patients always cause unfavorable artifacts in the recovered CT images. Albeit attaining promising reconstruction results for this metal artifact reduction (MAR) task, most of the existing deep-learning-based approaches have some limitations. The critical issue is that most of these methods have not fully exploited the important prior knowledge underlying this specific MAR task. Therefore, in this paper, we carefully investigate the inherent characteristics of metal artifacts which present rotationally symmetrical streaking patterns. Then we specifically propose an orientation-shared convolution representation mechanism to adapt such physical prior structures and utilize Fourier-series-expansion-based filter parametrization for modelling artifacts, which can finely separate metal artifacts from body tissues. By adopting the classical proximal gradient algorithm to solve the model and then utilizing the deep unfolding technique, we easily build the corresponding orientation-shared convolutional network, termed as OSCNet. Furthermore, considering that different sizes and types of metals would lead to different artifact patterns (e.g., intensity of the artifacts), to better improve the flexibility of artifact learning and fully exploit the reconstructed results at iterative stages for information propagation, we design a simple-yet-effective sub-network for the dynamic convolution representation of artifacts. By easily integrating the sub-network into the proposed OSCNet framework, we further construct a more flexible network structure, called OSCNet+, which improves the generalization performance. Through extensive experiments conducted on synthetic and clinical datasets, we comprehensively substantiate the effectiveness of our proposed methods. Code will be released at https://github.com/hongwang01/OSCNet.
更多
查看译文
关键词
Metal artifact reduction,rotation prior,orientation-shared convolution,dynamic inference
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要