Planning and Learning for Non-markovian Negative Side Effects Using Finite State Controllers.

AAAI(2023)

引用 2|浏览7
暂无评分
摘要
Autonomous systems are often deployed in the open world where it is hard to obtain complete specifications of objectives and constraints. Operating based on an incomplete model can produce negative side effects (NSEs), which affect the safety and reliability of the system. We focus on mitigating NSEs in environments modeled as Markov decision processes (MDPs). First , we learn a model of NSEs using observed data that contains state-action trajectories and severity of associated NSEs. Unlike previous works that associate NSEs with state-action pairs, our framework associates NSEs with entire trajectories, which is more general and captures non-Markovian dependence on states and actions. Second , we learn finite state controllers (FSCs) that predict NSE severity for a given trajectory and generalize well to unseen data. Finally , we develop a constrained MDP model that uses information from the underlying MDP and the learned FSC for planning while avoiding NSEs. Our empirical evaluation demonstrates the effectiveness of our approach in learning and mitigating Markovian and non-Markovian NSEs.
更多
查看译文
关键词
planning,learning,non-markovian
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要