3D reconstructions of parasite development and the intracellular niche of the microsporidian pathogen E. intestinalis .

bioRxiv : the preprint server for biology(2023)

引用 1|浏览3
暂无评分
摘要
Microsporidia are an early-diverging group of fungal pathogens that infect a wide range of hosts. Several microsporidian species infect humans, and infections can lead to fatal disease in immunocompromised individuals. As obligate intracellular parasites with highly reduced genomes, microsporidia are dependent on metabolites from their hosts for successful replication and development. Our knowledge of how microsporidian parasites develop inside the host remains rudimentary, and our understanding of the intracellular niche occupied by microsporidia has thus far relied largely on 2D TEM images and light microscopy. Here, we use serial block face scanning electron microscopy (SBF-SEM) to capture 3D snapshots of the human-infecting microsporidian, , within host cells. We track the development of through its life cycle, which allows us to propose a model for how its infection organelle, the polar tube, is assembled in each developing spore. 3D reconstructions of parasite-infected cells provide insights into the physical interactions between host cell organelles and parasitophorous vacuoles, which contain the developing parasites. The host cell mitochondrial network is substantially remodeled during infection, leading to mitochondrial fragmentation. SBF-SEM analysis shows changes in mitochondrial morphology in infected cells, and live-cell imaging provides insights into mitochondrial dynamics during infection. Together, our data provide insights into parasite development, polar tube assembly, and microsporidia-induced mitochondrial remodeling in the host cell.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要