Long-acting biodegradable implants for osteoporosis management: transforming the landscape of bisphosphonates delivery.

Future medicinal chemistry(2023)

引用 0|浏览3
暂无评分
摘要
Future Medicinal ChemistryVol. 15, No. 9 EditorialLong-acting biodegradable implants for osteoporosis management: transforming the landscape of bisphosphonates deliverySrushti Tambe‡, Kavindra Kumar Kesari, Yogendra Kumar Mishra, Purnima Amin & Sabya Sachi Das‡Srushti Tambe‡ https://orcid.org/0000-0003-4892-4889Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India‡Contributed equally to this articleSearch for more papers by this author, Kavindra Kumar Kesari https://orcid.org/0000-0003-3622-9555Department of Applied Physics, School of Science, Aalto University, Espoo, 00076, FinlandFaculty of Biological & Environmental Sciences, University of Helsinki, Biocentre 3, Helsinki, 00014, FinlandSearch for more papers by this author, Yogendra Kumar Mishra https://orcid.org/0000-0002-8786-9379NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg, 6400, DenmarkSearch for more papers by this author, Purnima Amin *Author for correspondence: E-mail Address: purnima.amin@yahoo.co.inhttps://orcid.org/0000-0002-4366-4144Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, IndiaSearch for more papers by this author & Sabya Sachi Das‡ **Author for correspondence: Tel.: +91 700 835 3853; E-mail Address: sabya2049@gmail.comhttps://orcid.org/0000-0002-4042-8525School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand, 248009, India‡Contributed equally to this articleSearch for more papers by this authorPublished Online:11 May 2023https://doi.org/10.4155/fmc-2023-0097AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: bioavailabilitybiodegradable polymeric implantsbisphosphonatescontrolled releasemolecular targetsosteoporosis managementReferences1. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet 377(9773), 1276–1287 (2011).Crossref, Medline, CAS, Google Scholar2. Ström O, Borgström F, Kanis JA et al. Osteoporosis: burden, health care provision and opportunities in the EU. Arch. Osteoporos. 6(1), 59–155 (2011).Crossref, Medline, CAS, Google Scholar3. Sözen T, Özışık L, Başaran N. An overview and management of osteoporosis. Eur J Rheumatol 4(1), 46–56 (2017).Crossref, Medline, Google Scholar4. WHO. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis: Report of a WHO Study Group [meeting held in Rome, Italy, 22–25 June 1992]. World Health Organization, Geneva, Switzerland, 1–129 (1994).Google Scholar5. Langdahl BL. Overview of treatment approaches to osteoporosis. Br. J. Pharmacol. 178(9), 1891–1906 (2021).Crossref, Medline, CAS, Google Scholar6. Zong Z, Xu L, Zhang N et al. Editorial: recent trends in pharmacological treatment of musculoskeletal disorders. Front. Pharmacol. 13, 908977 (2022).Crossref, Medline, Google Scholar7. Kennel KA, Drake MT. Adverse effects of bisphosphonates: implications for osteoporosis management. Mayo Clin. Proc. 84(7), 632–638 (2009).Crossref, Medline, CAS, Google Scholar8. Murad MH, Drake MT, Mullan RJ et al. Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J. Clin. Endocrinol. Metab. 97(6), 1871–1880 (2012).Crossref, Medline, CAS, Google Scholar9. Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin. Proc. 83(9), 1032–1045 (2008).Crossref, Medline, CAS, Google Scholar10. Asafo-Adjei TA, Chen AJ, Najarzadeh A, Puleo DA. Advances in controlled drug delivery for treatment of osteoporosis. Curr. Osteoporos. Rep. 14(5), 226–238 (2016).Crossref, Medline, CAS, Google Scholar11. Chavda VP, Jogi G, Paiva-Santos AC, Kaushik A. Biodegradable and removable implants for controlled drug delivery and release application. Expert Opin. Drug Deliv. 19(10), 1177–1181 (2022).Crossref, Medline, CAS, Google Scholar12. Li C, Guo C, Fitzpatrick V et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5(1), 61–81 (2020).Crossref, Google Scholar13. Holland C, Numata K, Rnjak-Kovacina J, Seib FP. The biomedical use of silk: past, present, future. Adv. Healthc. Mater. 8(1), 1800465 (2019).Crossref, Google Scholar14. Huang W, Ling S, Li C et al. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem. Soc. Rev. 47(17), 6486–6504 (2018).Crossref, Medline, CAS, Google Scholar15. Zhou Z, Zhang S, Cao Y et al. Engineering the future of silk materials through advanced manufacturing. Adv. Mater. 30(33), 1706983 (2018).Crossref, Google Scholar16. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials Science: An Introduction to Materials in Medicine. (2nd Edition). Elsevier, California, USA (2004).Google Scholar17. Chavan YR, Tambe SM, Jain DD et al. Redefining the importance of polylactide-co-glycolide acid (PLGA) in drug delivery. Ann. Pharm. Fr. 80(5), 603–616 (2022).Crossref, Medline, CAS, Google Scholar18. Dharmayanti C, Gillam TA, Williams DB, Blencowe A. Drug-eluting biodegradable implants for the sustained release of bisphosphonates. Polymers 12(12), 2930 (2020).Crossref, Medline, CAS, Google Scholar19. Perale G, Hilborn J. Bioresorbable polymers for biomedical applications: from fundamentals to translational medicine. Woodhead Publishing, Cambridge, UK (2016).Google Scholar20. Ozdil D, Wimpenny I, Aydin HM, Yang Y. 13 –Biocompatibility of biodegradable medical polymers. In: Science and Principles of Biodegradable and Bioresorbable Medical Polymers. Zhang X (Ed.). Woodhead Publishing, Cambridge, UK, 379–414 (2017).Crossref, Google Scholar21. Guan A, Hamilton P, Wang Y et al. Medical devices on chips. Nat. Biomed. Eng. 1(3), 0045 (2017).Crossref, CAS, Google Scholar22. Jannasch M, Gaetzner S, Groeber F et al. An in vitro model mimics the contact of biomaterials to blood components and the reaction of surrounding soft tissue. Acta Biomater. 89, 227–241 (2019).Crossref, Medline, CAS, Google Scholar23. Jannasch M, Gaetzner S, Weigel T et al. A comparative multi-parametric in vitro model identifies the power of test conditions to predict the fibrotic tendency of a biomaterial. Sci. Rep. 7(1), 1689 (2017).Crossref, Medline, Google Scholar24. Tambe S, Jain D, Agarwal Y, Amin P. Hot-melt extrusion: highlighting recent advances in pharmaceutical applications. J. Drug Deliv. Sci. Technol. 63, 102452 (2021).Crossref, CAS, Google ScholarFiguresReferencesRelatedDetails Vol. 15, No. 9 STAY CONNECTED Metrics Downloaded 17 times History Received 31 March 2023 Accepted 31 March 2023 Published online 11 May 2023 Published in print May 2023 Information© 2023 Newlands PressKeywordsbioavailabilitybiodegradable polymeric implantsbisphosphonatescontrolled releasemolecular targetsosteoporosis managementFinancial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.PDF download
更多
查看译文
关键词
biodegradable implants,osteoporosis management,long-acting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要