Safety verification and universal invariants for relational action bases

IJCAI 2023(2023)

引用 2|浏览8
暂无评分
摘要
Modeling and verification of dynamic systems operating over a relational representation of states are increasingly investigated problems in AI, Business Process Management and Database Theory. To make these systems amenable to verification, the amount of information stored in each state needs to be bounded, or restrictions are imposed on the preconditions and effects of actions. We lift these restrictions by introducing the framework of relational action bases (RABs), which generalizes existing frameworks and in which unbounded relational states are evolved through actions that can (1) quantify both existentially and universally over the data, and (2) use arithmetic constraints. We then study parameterized safety of RABs via (approximated) SMT-based backward search, singling out essential meta-properties of the resulting procedure, and showing how it can be realized by an off-the-shelf combination of existing verification modules of the state-of-the-art MCMT model checker. We demonstrate the effectiveness of this approach on a benchmark of data-aware business processes. Finally, we show how universal invariants can be exploited to make this procedure fully correct.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要