Paralogous FgIDO genes with differential roles in tryptophan catabolism, fungal development and virulence in Fusarium graminearum.

Microbiological research(2023)

引用 0|浏览17
暂无评分
摘要
Indoleamine 2,3-dioxygenase (Ido) is a tryptophan-degrading enzyme that is widely distributed across species. Ido catalyzes the first step of tryptophan (TRP) degradation and drives the de novo synthesis of nicotinamide adenine dinucleotide (NAD) coenzymes via the kynurenine (KYN) pathway. The budding yeast Saccharomyces cerevisiae possesses a single IDO gene (BNA2) that is responsible for NAD synthesis, whereas a number of fungal species contain multiple IDO genes. However, the biological roles of IDO paralogs in plant pathogens remain unclear. In the current study, we identified three FgIDOs from the wheat head blight fungus Fusarium graminearum. FgIDOA/B/C expression was significantly induced upon TRP treatment. Targeted disruption of FgIDOA and/or FgIDOB caused different levels of NAD auxotrophy, thus resulting in pleotropic phenotypic defects. Loss of FgIDOA resulted in abnormal conidial morphology, reduced mycelial growth, decreased virulence in wheat heads and reduced deoxynivalenol accumulation. Exogenous addition of KYN or various intermediates involved in the KYN pathway rescued auxotrophy of the mutants. Metabolomics analysis revealed shifts toward alternative TRP degradation pathways to melatonin and indole derivatives in mutants lacking FgIDOB. Upregulation of partner genes in auxotrophic mutants and the capacity to rescue the auxotroph by overexpressing a partner gene indicated functional complementation among FgIDOA/B/C. Taken together, the results of this study provide insights into differential roles in paralogous FgIDOs and how fungal TRP catabolism modulates fungal development and virulence.
更多
查看译文
关键词
3-dioxygenases,Deoxynivalanol,Fusarium graminearum,Indoleamine 2,Kynurenine pathway,Paralogous IDO genes,Tryptophan catabolism,Virulence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要