Disruption of early visual processing in amyloid-positive healthy individuals and mild cognitive impairment

Alzheimer's research & therapy(2023)

引用 2|浏览17
暂无评分
摘要
Background Amyloid deposition is a primary predictor of Alzheimer’s disease (AD) and related neurodegenerative disorders. Retinal changes involving the structure and function of the ganglion cell layer are increasingly documented in both established and prodromal AD. Visual event-related potentials (vERP) are sensitive to dysfunction in the magno- and parvocellular visual systems, which originate within the retinal ganglion cell layer. The present study evaluates vERP as a function of amyloid deposition in aging, and in mild cognitive impairment (MCI). Methods vERP to stimulus-onset, motion-onset, and alpha-frequency steady-state (ssVEP) stimuli were obtained from 16 amyloid-positive and 41 amyloid-negative healthy elders and 15 MCI individuals and analyzed using time–frequency approaches. Social cognition was assessed in a subset of individuals using The Awareness of Social Inference Test (TASIT). Results Neurocognitively intact but amyloid-positive participants and MCI individuals showed significant deficits in stimulus-onset (theta) and motion-onset (delta) vERP generation relative to amyloid-negative participants (all p < .01). Across healthy elders, a composite index of these measures correlated highly ( r = − .52, p < .001) with amyloid standardized uptake value ratios (SUVR) and TASIT performance. A composite index composed of vERP measures significant differentiated amyloid-positive and amyloid-negative groups with an overall classification accuracy of > 70%. Discussion vERP may assist in the early detection of amyloid deposition among older individuals without observable neurocognitive impairments and in linking previously documented retinal deficits in both prodromal AD and MCI to behavioral impairments in social cognition.
更多
查看译文
关键词
Alzheimer’s disease,Amyloid,Event-related potentials,Oscillations,Visual processing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要