A Novel CovidDetNet Deep Learning Model for Effective COVID-19 Infection Detection Using Chest Radiograph Images

APPLIED SCIENCES-BASEL(2022)

引用 18|浏览4
暂无评分
摘要
The suspected cases of COVID-19 must be detected quickly and accurately to avoid the transmission of COVID-19 on a large scale. Existing COVID-19 diagnostic tests are slow and take several hours to generate the required results. However, on the other hand, most X-rays or chest radiographs only take less than 15 min to complete. Therefore, we can utilize chest radiographs to create a solution for early and accurate COVID-19 detection and diagnosis to reduce COVID-19 patient treatment problems and save time. For this purpose, CovidDetNet is proposed, which comprises ten learnable layers that are nine convolutional layers and one fully-connected layer. The architecture uses two activation functions: the ReLu activation function and the Leaky Relu activation function and two normalization operations that are batch normalization and cross channel normalization, making it a novel COVID-19 detection model. It is a novel deep learning-based approach that automatically and reliably detects COVID-19 using chest radiograph images. Towards this, a fine-grained COVID-19 classification experiment is conducted to identify and classify chest radiograph images into normal, COVID-19 positive, and pneumonia. In addition, the performance of the proposed novel CovidDetNet deep learning model is evaluated on a standard COVID-19 Radiography Database. Moreover, we compared the performance of our approach with hybrid approaches in which we used deep learning models as feature extractors and support vector machines (SVM) as a classifier. Experimental results on the dataset showed the superiority of the proposed CovidDetNet model over the existing methods. The proposed CovidDetNet outperformed the baseline hybrid deep learning-based models by achieving a high accuracy of 98.40%.
更多
查看译文
关键词
chest X-ray, COVID-19, classification, detection, deep learning models
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要