Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation.

FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY(2022)

引用 18|浏览2
暂无评分
摘要
While the soft mechanics and tunable cell interactions facilitated by hydrogels have attracted significant interest in the development of functional hydrogel-based tissue engineering scaffolds, translating the many positive results observed in the lab into the clinic remains a slow process. In this review, we address the key design criteria in terms of the materials, crosslinkers, and fabrication techniques useful for fabricating translationally-relevant tissue engineering hydrogels, with particular attention to three emerging fabrication techniques that enable simultaneous scaffold fabrication and cell loading: 3D printing, in situ tissue engineering, and cell electrospinning. In particular, we emphasize strategies for manufacturing tissue engineering hydrogels in which both macroporous scaffold fabrication and cell loading can be conducted in a single manufacturing step - electrospinning, 3D printing, and in situ tissue engineering. We suggest that combining such integrated fabrication approaches with the lessons learned from previously successful translational experiences with other hydrogels represents a promising strategy to accelerate the implementation of hydrogels for tissue engineering in the clinic.
更多
查看译文
关键词
Hydrogels, Tissue Engineering, Bioprinting, Electrospinning, Biomaterials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要