Ultrathin Nanosheet-Supported Ag@Ag2O Core-Shell Nanoparticles with Vastly Enhanced Photothermal Conversion Efficiency for NIR-II-Triggered Photothermal Therapy

ACS biomaterials science & engineering(2022)

引用 21|浏览13
暂无评分
摘要
Photothermal therapy (PTT) working in the second near-infrared (NIR-II) region has aroused a huge interest due to its potential application in terms of clinical cancer treatment. However, owing to the lack of photothermal nanoagents with high photothermal conversion efficiency, NIR-II-driven PTT still suffers from poor efficiency and subsequent cancer recurrence. In this work, we show a new and highly efficient preparation approach for NIR-II photothermal nanoagents and tailor ultrathin layered double hydroxide (LDH)-supported Ag@Ag2O core-shell nano particles (Ag@Ag2O/LDHs-U), vastly improving NIR-II photo thermal performance. A combination study (high-resolution transmission electron microscopy (HRTEM), extended X-ray absorption fine structure spectroscopy (EXAFS), and X-ray photoelectron spectroscopy (XPS)) verifies that ultrafine Ag@Ag2O core-shell nanoparticles (similar to 3.8 nm) are highly dispersed and firmly immobilized within ultrathin LDH nanosheets, and their Ag2O shell possesses abundant vacancy-type defects. These unique Ag@Ag2O/LDHs-U display an impressive photothermal conversion efficiency as high as 76.9% at 1064 nm. Such an excellent photothermal performance is likely attributed to the enhanced localized surface plasmon resonance (LSPR) coupling effect between Ag and Ag2O and the reduced band gap caused by vacancy-type defects in the Ag2O shell. Meanwhile, Ag@Ag2O/LDHs-U also show prominent photothermal stability, due to the unique supported core-shell nanostructure. Moreover, both in vitro and in vivo studies further confirm that Ag@Ag2O/LDHs-U possess good biocompatible properties and outstanding PTT therapeutic efficacy in the NIR-II region. This research shows a new strategy in the rational design and preparation of an efficient photothermal agent, which is helpful to achieve more accurate and effective cancer theranostics.
更多
查看译文
关键词
heterostructure nanoparticle, ultrathin nanosheet, photothermal conversion efficiency, photothermal therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要