Base Editing Repairs the HbE Mutation Restoring the Production of Normal Globin Chains in Severe HbE/beta-Thalassemia Patient Hematopoietic Stem Cells and Erythroid Cells

Blood(2021)

引用 0|浏览18
暂无评分
摘要
HbE/β-thalassemia is the commonest form of severe β-thalassemia, and comprises approximately 50% of all cases worldwide. HbE/β-thalassemia is caused by the HbE codon 26 G>A mutation on one allele and any severe β 0-thalassemia mutation on the other. These mutations lead to a reduction in β-globin production, resulting in a relative excess in α-globin chains that go on to cause ineffective erythropoiesis. Importantly, individuals with a mutation on one, but not two, alleles have β-thalassemia trait, a carrier state with a normal phenotype. Recent gene therapy and gene editing approaches have been developed to treat β-thalassemia but do not directly repair the causative mutation in-situ. Gene replacement approaches rely on lentiviral vector-based sequence insertion or homology directed repair (HDR). HbF induction strategies also rely on non-homologous end joining (NHEJ) targeting of enhancers in-trans. These approaches, whilst variably successful, are associated with potential safety concerns. Adenine base editors (ABEs) potentially circumvent these problems by directly repairing pathogenic variants in-situ through deamination. ABEs catalyse A-T to G-C conversions through targeting with a Cas9-nickase and single-guide RNA (sgRNA). Conversion of the HbE codon to normal through base editing is an attractive strategy to recapitulate the phenotypically normal β-thalassemia trait state without potentially harmful double-strand breaks or random vector insertions (Figure 1A). ABEs are able to convert the HbE codon (AAG, lys) to wild-type (GAG, glu), but also to GGG (gly) or AGG (arg). GGG at codon 26 is found in a naturally occurring hemoglobin, Hb Aubenas. Heterozygotes have normal red cell indices and are phenotypically normal.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要