Physics-Informed Neural Operator for Learning Partial Differential Equations

arxiv(2023)

引用 0|浏览63
暂无评分
摘要
In this paper, we propose physics-informed neural operators (PINO) that uses available data and/or physics constraints to learn the solution operator of a family of parametric Partial Differential Equation (PDE). This hybrid approach allows PINO to overcome the limitations of purely data-driven and physics-based methods. For instance, data-driven methods fail to learn when data is of limited quantity and/or quality, and physics-based approaches fail to optimize on challenging PDE constraints. By combining both data and PDE constraints, PINO overcomes all these challenges. Additionally, a unique property that PINO enjoys over other hybrid learning methods is its ability to incorporate data and PDE constraints at different resolutions. This allows us to combine coarse-resolution data, which is inexpensive to obtain from numerical solvers, with higher resolution PDE constraints, and the resulting PINO has no degradation in accuracy even on high-resolution test instances. This discretization-invariance property in PINO is due to neural-operator framework which learns mappings between function spaces and allows evaluation at different resolutions without the need for re-training. Moreover, PINO succeeds in the purely physics setting, where no data is available, while other approaches such as the Physics-Informed Neural Network (PINN) fail due to optimization challenges, e.g. in multi-scale dynamic systems such as Kolmogorov flows. This is because PINO learns the solution operator by optimizing PDE constraints on multiple instances while PINN optimizes PDE constraints of a single PDE instance. Further, in PINO, we incorporate the Fourier neural operator (FNO) architecture which achieves orders-of-magnitude speedup over numerical solvers and also allows us to compute explicit gradients on function spaces efficiently.
更多
查看译文
关键词
learning partial differential
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要