基本信息
浏览量:796

个人简介
Professor Anandkumar's research interests are in the areas of large-scale machine learning, non-convex optimization and high-dimensional statistics. In particular, she has been spearheading the development and analysis of tensor algorithms for machine learning. Tensor decomposition methods are embarrassingly parallel and scalable to enormous datasets. They are guaranteed to converge to the global optimum and yield consistent estimates for many probabilistic models such as topic models, community models, and hidden Markov models. More generally, Professor Anandkumar has been investigating efficient techniques to speed up non-convex optimization such as escaping saddle points efficiently.
研究兴趣
论文共 396 篇科研项目共 3 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Tingtao Zhou, Xuan Wan, Daniel Zhengyu Huang,Zongyi Li,Zhiwei Peng,Anima Anandkumar,John F. Brady,Paul W. Sternberg,Chiara Daraio
arxiv(2023)
引用0浏览0引用
0
0
Xuan Zhang,Limei Wang, Jacob Helwig,Youzhi Luo,Cong Fu,Yaochen Xie,Meng Liu,Yuchao Lin,Zhao Xu,Keqiang Yan,Keir Adams, Maurice Weiler,
CoRR (2023)
引用2浏览0EI引用
2
0
Sungduk Yu,Walter M. Hannah,Liran Peng, Mohamed Aziz Bhouri,Ritwik Gupta, Jerry Lin,Björn Lütjens, Justus C. Will,Tom Beucler,Bryce E. Harrop, Benjamin R. Hillman, Andrea M. Jenney,
arxiv(2023)
引用0浏览0引用
0
0
CoRR (2023)
引用0浏览0EI引用
0
0
arxiv(2023)
引用0浏览0引用
0
0
J. Mach. Learn. Res. (2023): 89:1-89:97
引用0浏览0EI引用
0
0
加载更多
作者统计
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn