Cancer-cell-biomimetic Upconversion nanoparticles combining chemo-photodynamic therapy and CD73 blockade for metastatic triple-negative breast cancer

Journal of Controlled Release(2021)

引用 54|浏览8
暂无评分
摘要
Photodynamic therapy (PDT) and chemotherapy show clinical promise in destroying orthotopic tumors but are insufficient against abscopal metastases. The research reports the combined application of an anti-CD73 antibody and chemo-PDT to synergistically amplify the anti-metastatic effects of T cell-mediated antitumor immunity. The cancer cell membrane (CM)-cloaked upconversion nanoparticles, integrating rose bengal (RB) and the reactive oxygen species (ROS)-sensitive polymer polyethylene glycol-thioketal-doxorubicin (PEG-TK-DOX, i.e., PTD), are tailored for near-infrared (NIR)-triggered chemo-PDT. CM camouflage enables nanoparticles' excellent tumor-targeting abilities and immune escape from macrophages. The combination of PDT and chemotherapy presents strong synergistic antitumor efficacy and synchronously causes a series of immunogenic cell death (ICD), leading to tumor-specific immunity. The anti-CD73 antibody prevents the immunosuppression phenomenon in tumors by blocking the adenosine pathway, and it is emerging as a sufficient immune checkpoint blockade when combined with ICD-elicited tumor therapies. As cancer membrane camouflaged nanoparticles CM@UCNP-RB/PTD combined with anti-CD73 antibodies, synergistic efficacy of chemotherapy and PDT not only destroys the orthotopic tumors by DOX and cytotoxic ROS but also prevents abscopal tumor metastasis via inducing systemic cytotoxic T cell responses with CD73 blockade. This strategy is promising in curing metastatic triple-negative breast cancer in preclinical research.
更多
查看译文
关键词
Chemo-photodynamic therapy,Cancer cell membranes,CD73 blockade,Antitumor immunity,Tumor metastasis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要