Chemiresistive Acetylene Sensor Fabricated From Ga-Doped Zno Nanofibers Functionalized With Pt Catalysts

SENSORS AND ACTUATORS B-CHEMICAL(2021)

引用 15|浏览10
暂无评分
摘要
Herein, we demonstrate a sensitization strategy via solid-solution doping and catalytic metal nanoparticles (NPs) onto porous metal oxide nanofibers (NFs) for superior acetylene (C2H2) sensing capabilities. The introduction of dopants and catalysts not only increases the inherent reactivity of metal oxides, but also induces the spillover of C2H2 onto metal oxides, significantly improving the sensing properties. We elucidate that the high porosity of the metal oxide NFs, prepared by electrospinning and utilizing saponin as a sacrificial template, is the key to achieving high gas permeability and numerous active sites. Consequently, Ga-doped ZnO porous NFs functionalized with Pt catalysts exhibited the highest C2H2 sensing responses among the current state-of-the-art C2H2 sensors (R-a/R-g = 26.2 at 400 degrees C) with a fast response time (10.2 s), at a particularly low concentration of 5 ppm. Moreover, these NFs showed excellent selectivity against the interfering gas (H-2, C7H8, CO, CH4, C8H10, CH3COCH3, HCHO and C2H5OH) and outstanding stability up to 20 sensing cycles to 0.4 ppm of C2H2. These results provide an efficient strategy to tailor composites of metal oxide nanostructures, dopants, and catalysts for highly sensitive gas sensors.
更多
查看译文
关键词
Electrospinning, Gas sensors, Semiconducting metal oxides, Oxide nanofibers, Acetylene sensor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要