Spatial patterns of tumour growth impact clonal diversification: computational modelling and evidence in the TRACERx Renal study

user-5fe1a78c4c775e6ec07359f9(2021)

引用 0|浏览12
暂无评分
摘要
Abstract Intra-tumour genetic heterogeneity (ITH) fuels cancer evolution. The role of clonal diversity and genetic complexity in the progression of clear-cell renal cell carcinomas (ccRCCs) has been characterised, but the ability to predict clinically relevant evolutionary trajectories remains limited. Here, towards enhancing this ability, we investigated spatial features of clonal diversification through a combined computational modelling and experimental analysis in the TRACERx Renal study. We observe through modelling that spatial patterns of tumour growth impact the extent and trajectory of subclonal diversification. Moreover, subpopulations with high clonal diversity, and parallel evolution events, are frequently observed near the tumour margin. In-silico time-course studies further showed that budding structures on the tumour surface could indicate future steps of subclonal evolution. Such structures were evident radiologically in 15 early-stage ccRCCs, raising the possibility that spatially resolved sampling of these regions, when combined with sequencing, may enable identification of evolutionary potential in early-stage tumours.
更多
查看译文
关键词
tumour growth impact,tracerx renal study,clonal diversification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要