Finite element and experimental study on multiaxial fatigue analysis of rail clip failures

FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES(2020)

引用 14|浏览2
暂无评分
摘要
The rail clip fastening system is an important structural component of railway track systems providing flexibility and turnover resistance for running rails. High replacement frequency of fasteners was observed compared with other components because of fatigue failures of rail clips. In this study, implicit and explicit finite element (FE) models were developed for E-clip and Fast-clip with material and fatigue properties obtained from experimental testing. The fatigue loading experiments were conducted to determine the strain-life relationship. The assessments of the fatigue damage and fatigue life were analysed using the FE results for the rail clip strain/stress components with the Fatemi-Socie multiaxial fatigue criterion. A time-efficient smallest enclosing circle algorithm was developed to search the critical plane orientation and the maximum shear strain amplitude for fatigue analysis. This work provides a method for FE and experimental study of multiaxial fatigue analysis of rail clip failures subjected to dynamic loading.
更多
查看译文
关键词
critical plane approach,dynamic finite element method,multiaxial fatigue analysis,rail clip
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要