Rubidium Clock Lamplight Variations and Long-Term Frequency Instability: First Analyses of Multiyear GPS Data

PROCEEDINGS OF THE 47TH ANNUAL PRECISE TIME AND TIME INTERVAL SYSTEMS AND APPLICATIONS MEETING(2016)

引用 1|浏览3
暂无评分
摘要
In the rubidium atomic frequency standard (RAFS), an rf-discharge lamp produces the device's atomic signal. As a consequence of the light-shift effect, variations in the lamplight's intensity result in variations in the RAFS' output frequency. While the basic physics of the light-shift is reasonably well understood, its operational implications for global navigation satellite system (GNSS) performance is only beginning to be fully appreciated. Here, we describe first results examining decade-long histories of on-orbit GPS RAFS lamplight variations and GPS RAFS frequency variations. Our preliminary analyses have focused on one space vehicle's RAFS, and our conclusions are tempered by that present limitation. Nevertheless, our analyses suggest that a RAFS' long-term frequency stability (i.e., tau similar to 10(6) sec) is likely lower-bounded by the lamp's intensity fluctuations. Moreover, considering the light-shift coefficient for this one particular RAFS over 12 years, we find that the data do not support Camparo's hypothesis regarding RAFS frequency aging and a time-varying light-shift coefficient.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要