Title Hypertonic saline reduces inflammation and enhances theresolution of oleic acid induced acute lung injury

semanticscholar(2018)

引用 0|浏览0
暂无评分
摘要
Background: Hypertonic saline (HTS) reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods: Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA) induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12) or hypertonic saline (HTS, n = 12), and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA) induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6) or hypertonic saline (HTS, n = 6), and the extent of lung injury assessed after 6 hours. Results: In Series I, HTS significantly reduced bronchoalveolar lavage (BAL) neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion: These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury. Background Hypertonic saline (7.5% saline, HTS) exhibits considerable potential as a therapeutic agent in diverse injury models. HTS has been demonstrated to inhibit acute lung injury (ALI) induced by systemic ischemia-reperfusion [1], hemorrhagic shock [2], and acute pancreatitis [3,4] in Published: 8 July 2008 BMC Pulmonary Medicine 2008, 8:9 doi:10.1186/1471-2466-8-9 Received: 20 May 2008 Accepted: 8 July 2008 This article is available from: http://www.biomedcentral.com/1471-2466/8/9 © 2008 Kennedy et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. BMC Pulmonary Medicine 2008, 8:9 http://www.biomedcentral.com/1471-2466/8/9
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要