Protective Role of Levetiracetam Against Cognitive Impairment And Brain White Matter Damage in Mouse prolonged Cerebral Hypoperfusion.

Neuroscience(2019)

引用 23|浏览14
暂无评分
摘要
White matter lesions due to cerebral hypoperfusion may be an important pathophysiology in vascular dementia and stroke, although the inherent mechanisms remain to be fully elucidated. The present study, using a mouse model of chronic cerebral hypoperfusion, examined the white matter protective effects of levetiracetam, an anticonvulsant, via the signaling cascade from the activation of cAMP-responsive element binding protein (CREB) phosphorylation. Mice underwent bilateral common carotid artery stenosis (BCAS), and were separated into the levetiracetam group (injected once only after BCAS [LEV1] or injected on three consecutive days [LEV3]), the vehicle group, or the anti-epileptic drugs with different action mechanisms phenytoin group (PHT3; injected on three consecutive days with the same condition as in LEV3). Cerebral blood flow analysis, Y-maze spontaneous alternation test, novel object recognition test, immunohistochemical and Western blot analyses, and protein kinase A assay were performed after BCAS. In the LEV3 group, SV2A expression was markedly increased, which preserved learning and memory after BCAS. Moreover, as the protein kinase A level was significantly increased, pCREB expression was also increased. The activation of microglia and astrocytes was markedly suppressed, although the number of oligodendrocyte precursor cells (OPCs) and GST-pi-positive-oligodendrocytes was markedly higher in the cerebral white matter. Moreover, oxidative stress was significantly reduced. We found that 3-day treatment with levetiracetam maintained SV2A protein expression via interaction with astrocytes, which influenced the OPC lineage through activation of CREB to protect white matter from ischemia.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要