Natural Secretory Immunoglobulins Enhance Norovirus Infection

bioRxiv(2018)

引用 2|浏览20
暂无评分
摘要
Secretory immunoglobulins (SIg) are a first line of mucosal defense by the host. They are secreted into the gut lumen via the polymeric immunoglobulin receptor (pIgR) where they bind to antigen and are transported back across the FAE via M cells. Noroviruses are highly prevalent, enteric pathogens that cause significant morbidity, mortality and economic losses worldwide. Murine norovirus (MNV) exploits microfold (M) cells to cross the lymphoid follicle-associated epithelium (FAE) and infect the underlying population of immune cells. However, whether natural, innate SIg can protect against norovirus infection remains unknown. To investigate the role of natural SIg during murine norovirus pathogenesis, we used pIgR-deficient animals, which lack SIg in the intestinal lumen. Contrary to other enteric pathogens, acute MNV replication was significantly reduced in the gastrointestinal tract of pIgR-deficient animals compared to controls, despite increased numbers of dendritic cells, macrophages, and B cells in the Peyers patch, established MNV target cell types. Also, natural SIg did not alter MNV FAE binding or FAE crossing into the lymphoid follicle. Instead, further analysis revealed enhanced baseline levels of the antiviral molecules interferon gamma (IFN-gamma) and inducible nitric oxide synthase (iNOS) in the small intestine of naive pIgR-deficient animals compared to controls. Removing the microbiota equalized IFN-gamma and iNOS transcript levels as well as MNV viral loads in germ-free pIgR KO mice compared to germ-free controls. These data are consistent with a model whereby SIg sensing reduces pro-inflammatory, antiviral molecules, which facilitates intestinal homeostasis but thereby promotes MNV infection. In conclusion, these findings demonstrate that natural SIg are not protective during norovirus infection in mice and represent another example of indirect modulation of enteric virus pathogenesis by the microbiota.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要