Evolutionary dynamics of abundant stop codon readthrough in Anopheles and Drosophila

bioRxiv(2016)

引用 0|浏览60
暂无评分
摘要
Translational stop codon readthrough was virtually unknown in eukaryotic genomes until recent developments in comparative genomics and new experimental techniques revealed evidence of readthrough in hundreds of fly genes and several human, worm, and yeast genes. Here, we use the genomes of 21 species of Anopheles mosquitoes and improved comparative techniques to identify evolutionary signatures of conserved, functional readthrough of 353 stop codons in the malaria vector, Anopheles gambiae, and 51 additional Drosophila melanogaster stop codons, with several cases of double and triple readthrough including readthrough of two adjacent stop codons, supporting our earlier prediction of abundant readthrough in pancrustacea genomes. Comparisons between Anopheles and Drosophila allow us to transcend the static picture provided by single-clade analysis to explore the evolutionary dynamics of abundant readthrough. We find that most differences between the readthrough repertoires of the two species are due to readthrough gain or loss in existing genes, rather than to birth of new genes or to gene death; that RNA structures are sometimes gained or lost while readthrough persists; and that readthrough is more likely to be lost at TAA and TAG stop codons. We also determine which characteristic properties of readthrough predate readthrough and which are clade-specific. We estimate that there are more than 600 functional readthrough stop codons in A. gambiae and 900 in D. melanogaster. We find evidence that readthrough is used to regulate peroxisomal targeting in two genes. Finally, we use the sequenced centipede genome to refine the phylogenetic extent of abundant readthrough.
更多
查看译文
关键词
Translational readthrough,Anopheles,mosquito,Drosophila,stop codon,read-through,termination codon suppression,peroxisomal targeting,comparative genomics,recoding,dicistronic,selenocysteine,SECIS,Strigamia maritima,PhyloCSF
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要