Interplay between TRAP1 and sirtuin-3 modulates mitochondrial respiration and oxidative stress to maintain stemness of glioma stem cells.

CANCER RESEARCH(2019)

引用 75|浏览65
暂无评分
摘要
Glioblastoma (GBM) cancer stem cells (CSC) are primarily responsible for metastatic dissemination, resistance to therapy, and relapse of GBM, the most common and aggressive brain tumor. Development and maintenance of CSCs require orchestrated metabolic rewiring and metabolic adaptation to a changing microenvironment. Here, we show that cooperative interplay between the mitochondrial chaperone TRAP1 and the major mitochondria deacetylase sirtuin-3 (SIRT3) in glioma stem cells (GSC) increases mitochondrial respiratory capacity and reduces production of reactive oxygen species. This metabolic regulation endowed GSCs with metabolic plasticity, facilitated adaptation to stress (particularly reduced nutrient supply), and maintained "stemness." Inactivation of TRAP1 or SIRT3 compromised their interdependent regulatory mechanisms, leading to metabolic alterations, loss of stemness, and suppression of tumor formation by GSC in vivo. Thus, targeting the metabolic mechanisms regulating interplay between TRAP1 and SIRT3 may provide a novel therapeutic option for intractable patients with GBM. Significance: Discovery and functional analysis of a TRAP1-SIRT3 complex in glioma stem cells identify potential target proteins for glioblastoma treatment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要