Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato.

Ecotoxicology and Environmental Safety(2019)

引用 105|浏览26
暂无评分
摘要
Heavy metal toxicity is one of the main factors that limit crop growth and yield in the world. Salicylic acid (SA) is thought to be a plant hormone that plays an important role in plant growth, development, and resistance to abiotic stresses. To uncover the toxic alleviation effects of SA on potato plants to cadmium (Cd) stress, the morphological, physiological, and biochemical indexes including antioxidant defense system were assayed in potato plants under 200 μM Cd stress in 1/2 Hoagland solution with foliar application of 600 μM SA concentration (10 ml/plant). Interestingly, exogenous SA treatment mitigated Cd toxicity by increasing the relative water content (RWC), chlorophyll, proline, and endogenous SA contents along with decline in malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion radicals (O2-). Correspondingly, our study also proved that SA may stimulate the antioxidant enzymatic mechanism pathway including superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2) in potato plants subjected to Cd stress. Moreover, the expression level of selected genes relate to SA and reactive oxygen species (ROS) metabolism (StSABP2, StSOD and StAPX) were enhanced in SA-treated potato plants under Cd stress, indicating that SA treatment regulated the expression of these genes, which in turn enhanced potato tolerance to Cd stress. Taken together, our results indicated that exogenous SA can play a positive regulatory role in alleviating Cd toxicity in potato plants.
更多
查看译文
关键词
APX,CAT,Cd,GR,H2O2,MDA,O2-,ROS,RWC,SA,SOD
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要