Direct Determination of Aerosol pH: Size-Resolved Measurements of Submicrometer and Supermicrometer Aqueous Particles.

ANALYTICAL CHEMISTRY(2018)

引用 92|浏览14
暂无评分
摘要
Measuring the acidity of atmospheric aerosols is critical, as many key multiphase chemical reactions involving aerosols are highly pH-dependent. These reactions impact processes, such as secondary organic aerosol (SOA) formation, that impact climate and health. However, determining the pH of atmospheric particles, which have minute volumes (10(-23)-10(-18) L), is an analytical challenge due to the nonconservative nature of the hydronium ion, particularly as most chemical aerosol measurements are made offline or under vacuum, where water can be lost and acid-base equilibria shifted. Because of these challenges, there have been no direct methods to probe atmospheric aerosol acidity, and pH has typically been determined by proxy/indirect methods, such as ion balance, or thermodynamic models. Herein, we present a novel and facile method for direct measurement of size-resolved aerosol acidity from pH 0 to 4.5 using quantitative colorimetric image processing of cellular phone images of (NH4)(2)SO4-H2SO4 aqueous aerosol particles impacted onto pH-indicator paper. A trend of increasing aerosol acidity with decreasing particle size was observed that is consistent with spectroscopic measurements of individual particle pH. These results indicate the potential for direct measurements of size-resolved atmospheric aerosol acidity, which is needed to improve fundamental understanding of pH-dependent atmospheric processes, such as SOA formation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要