Gas-phase generation of noble metal-tipped NiO nanorods by rapid thermal oxidation

MATERIALS RESEARCH EXPRESS(2014)

引用 10|浏览1
暂无评分
摘要
The thermal oxidation of alloy nanoparticles (NPs) composed of nickel and a noble metal was investigated by high-resolution electron microscopic observations of the NPs oxidized in a gas phase under different oxidation conditions. When Ni0.8Au0.2 NPs were heated with oxygen from room temperature, oxidation progressed to form Au-NiO core-shell structures, however, the Au core spilled out by breaking the NiO shell at high temperatures. In contrast, when the alloy NPs were subjected to rapid thermal oxidation, which was enabled by heating the NPs at high temperatures (>= 500 degrees C) and then abruptly exposed to oxygen, oxidation advanced anisotropically such that a NiO island protruded and built up to form a NiO nanorod. This resulted in the formation of Au-tipped NiO nanorods in which a hemispherical Au tip bonded to a NiO nanorod via a Au {111}/NiO{100} interface. We found that the relative sizes of Au and NiO in Au-tipped NiO nanorods were easily and widely controlled by changing the Au mole fraction (0.05-0.8) of the alloy NPs. Similarly, rapid thermal oxidation of Ni-Pt NPs generated Pt-tipped NiO nanorods in which a spherical Pt tip was half-embedded in a NiO nanorod. The present gas-phase approach has great potential for fabricating functional asymmetric hybrid nanostructures in clean conditions.
更多
查看译文
关键词
nanoparticles,oxidation,nanorods,heterojunction,electron microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要