Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates.

Proceedings of the National Academy of Sciences of the United States of America(2015)

引用 247|浏览2
暂无评分
摘要
Since its discovery and isolation, exogenous insulin has dramatically changed the outlook for patients with diabetes. However, even when patients strictly follow an insulin regimen, serious complications can result as patients experience both hyperglycemic and hypoglycemic states. Several chemically or genetically modified insulins have been developed that tune the pharmacokinetics of insulin activity for personalized therapy. Here, we demonstrate a strategy for the chemical modification of insulin intended to promote both long-lasting and glucose-responsive activity through the incorporation of an aliphatic domain to facilitate hydrophobic interactions, as well as a phenylboronic acid for glucose sensing. These synthetic insulin derivatives enable rapid reversal of blood glucose in a diabetic mouse model following glucose challenge, with some derivatives responding to repeated glucose challenges over a 13-h period. The best-performing insulin derivative provides glucose control that is superior to native insulin, with responsiveness to glucose challenge improved over a clinically used long-acting insulin derivative. Moreover, continuous glucose monitoring reveals responsiveness matching that of a healthy pancreas. This synthetic approach to insulin modification could afford both long-term and glucose-mediated insulin activity, thereby reducing the number of administrations and improving the fidelity of glycemic control for insulin therapy. The described work is to our knowledge the first demonstration of a glucose-binding modified insulin molecule with glucose-responsive activity verified in vivo.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要