GABAergic terminals are a source of galanin to modulate cholinergic neuron development in the neonatal forebrain.

CEREBRAL CORTEX(2014)

引用 12|浏览15
暂无评分
摘要
The distribution and (patho-) physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with.-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain.
更多
查看译文
关键词
axon,basal forebrain,galanin receptor 2,neurotrophin,projection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要