Characterization of nano-enhanced interconnect materials for fine pitch assembly

SOLDERING & SURFACE MOUNT TECHNOLOGY(2014)

引用 3|浏览10
暂无评分
摘要
Purpose - Multiple fillers are adopted to study the filler influences on electrical and mechanical properties of the conductive adhesives. The performances of the developed nano-enhanced interconnect materials in printing process are also evaluated. The paper aims to discuss these issues. Design/methodology/approach - Micron-sized silver flakes are used as the basic fillers, and submicro- and nano-sized silver spheres and carbon nanotubes (CNTs) are adopted to obtain conductive adhesives with multiple fillers. Differential scanning calorimetry measurement is carried out to characterize the curing behavior of the samples with different fillers, four-probe method is used to obtain the bulk resistivity, shear test is conducted for adhesive strength, and environmental loading test is also involved. Furthermore, printing trials with different patterns have been carried out. Findings -The electrical resistivity of the adhesives with submicro-sized silver spheres does not monotonically change with the increasing sphere proportion, and there exists an optimized value for the ratio of silver flakes to spheres. Samples with relatively small amount of CNT additives show improved electrical properties, while their mechanical strengths tend to decrease. For the printing application, the adhesives with 18.3 volume% filler content behave much better than those with lower filler content of 6 percent. The presence of the nano-particles makes a slight improvement in the printing results. Research limitations/implications - More detailed printing performance and reliability test of the samples need to be carried out in the future. Originality/value - The conductive adhesives as interconnect materials exhibit some improved properties with optimized bimodal or trimodal fillers. The additive of the nano-fillers affects slightly on the printing quality of the bimodal conductive adhesives.
更多
查看译文
关键词
CNT,Conductive adhesives,Flexible PCBs,Nano-Ag paste
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要