A simple approach for improving the hybrid MMVB force field: application to the photoisomerization of s-cis butadiene.

JOURNAL OF COMPUTATIONAL CHEMISTRY(2003)

引用 33|浏览7
暂无评分
摘要
MMVB is a QM/MM hybrid method, consisting of a molecular mechanics force field coupled to a valence bond Heisenberg Hamiltonian parametrized from ab initio CASSCF calculations on several prototype molecules. The Heisenberg Hamiltonian matrix elements Q(ij) and K-ij, whose expressions are partitioned here into a primary contribution and second-order correction terms, are calculated analytically in MMVB. When the original MMVB force field fails to produce potential energy surfaces accurate enough for dynamics calculations, we show that significant improvements can be made by refitting the second-order correction terms for the particular molecule(s) being studied. This "local" reparametrization is based on values of K-ij extracted (using effective, Hamiltonian techniques) from CASSCF calculations on the same molecule(s). The method is demonstrated for the photoisomerization of s-cis butadiene, and we explain how the correction terms that enabled a successful MMVB dynamics study [Garavelli, M.; Bernardi, F.; Olivucci, M.; Bearpark, M. J.; Klein, S.; Robb, M. A. J Phys Chem A 2001, 105, 11496] were refitted. (C) 2003 Wiley Periodicals, Inc.
更多
查看译文
关键词
hybrid QM/MM method,MMVB,effective Heisenberg Hamiltonian,butadiene,computational photochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要