A Spectroscopic Method for Distinguishing Two Novel Sandwich-Type Tungsten Oxide Cluster Compounds.

Wen-Jun Mi,Wen-Chao Bi, Ming-Ze Meng,Yi-Ping Chen,Yan-Qiong Sun

Applied spectroscopy(2024)

引用 0|浏览0
暂无评分
摘要
This study introduces two novel sandwich-type tungsten-oxygen cluster compounds synthesized by hydrothermal methods, H4(C6H12N2H2)3{Na(H2O)2[Mn2(H2O)(GeW9O34)]}2 (Compound 1) and H2(C6H12N2H2)3.5{Na3(H2O)4[Co2(H2O)(GeW9O34)]2}·17H2O (Compound 2). The two compounds comprise cluster anions [GeW9O34]10- coordinated with transition metal atoms, either Mn or Co, and are stabilized by organic ligands. These compounds are crystallized in the hexagonal crystal system and P63/m space group. The two compounds were characterized through various techniques. Fourier transform infrared (IR) spectroscopy showed absorption peaks of anionic backbone vibrations of the Keggin cluster at 500-1000 cm-1, IR spectral peaks of δ(N-H) and νas(C-N) of the ligand triethylenediamine at 1000-2000 cm-1, and IR spectral peaks of the ligand νas(N-H) and νas(O-H) of water at 3000-3500 cm-1. Despite similar one-dimensional (1D) IR spectra due to the same cluster anions and similar molecular structures, the two compounds exhibited distinct responses in two-dimensional correlation spectroscopy with IR under magnetic and thermal perturbations. Under magnetic perturbation, Compound 1 showed a strong response peak for νas(W-Ob-W), while Compound 2 exhibited a strong response peak for νas(W=Od), possibly linked to differing magnetic particles. Similarly, Compound 1 displayed a strong response peak under thermal perturbation for νas(W-Oc-W). In contrast, Compound 2 showed a strong response peak for νas(W=Od); these results may be attributed to the different hydrogen bonding connections between the two compounds, which affect the groups in distinct ways through vibration and transmit these vibrations to the W-O bonds. The research presented in this paper expands the theoretical and experimental data of 2D correlation IR spectroscopy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要