An In-Depth Investigation of the Effects of Tungsten Inert Gas Welding Process Parameters on Hardness and Corrosion Resistance of 2205 DSS Weldments: New Design of Experiment Parametric Studies and Optimization

Mohamed S. Melad,Mohamed A. Gebril, Farag M. Shuaeib, Rafaa M. Esmaael, Mohamed A. El-Hag

International Journal of Engineering Research in Africa(2024)

引用 0|浏览0
暂无评分
摘要
The aim of this work is to examine and analyze, using response surface methodology, how the TIG welding process parameters of welding current (WC), welding speed (WS), and N2 with argon as shielding gas affect the hardness and corrosion resistance of 2205 DSS weldments. Due to the equal amounts of ferrite and austenite phases and alloying elements, duplex stainless steel DSS offers good mechanical properties and corrosion resistance. The mechanical characteristics and resistance to corrosion of the weld zone, as well as the heat-affected zone of the DSS, are, however, disturbed as a result of the welding process since it changes the distribution of these two phases and also the alloy is thermally disturbed. Therefore, in this work, an in-depth investigation of the effects of the above-mentioned parameters on the DSS quality has been performed. Results showed that increasing welding current while decreasing welding speed, which corresponds to the highest heat input, led to lower critical pitting potential and weld zone hardness but higher heat-affected zone hardness. The same results were obtained for decreasing welding current while increasing welding speed, which correspond to the lowest heat input. However, the addition of a small percent (%) of N2 to argon shielding gas resulted in increasing the critical pitting potential and decreasing the hardness in welds and heat-affected zones. Numerically, the RSM planned experimental results showed that an optimum welding current of 175A, welding speed of 170 mm/min, and 10% N2 with argon as shielding gas maximized the critical pitting potential up to 318 mV and optimized the hardness of the weld and heat-affected zone to about base metal hardness of 288 and 286 HV, respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要