Optimization of the hydrogen embrittlement resistance in ultra-high-strength multi-alloyed steel via controlling the reversed austenite fraction and stability

International Journal of Hydrogen Energy(2024)

引用 0|浏览2
暂无评分
摘要
This paper discusses the effect of reversed austenite (RA) on hydrogen embrittlement (HE) behavior of a high-strength multi-alloyed steel. Three heat treated samples were fabricated by quenching-lamellarization-tempering (QLT) treatment with varying the features of RA. The experimental results revealed that the existence of reversed austenite could reduce the effective diffusion coefficient and HE susceptibility. QLT specimens exhibited the optimization of the strength and HE resistance with 6.7% filmy and stable reversed austenite, which could hinder the hydrogen diffusion, reduce local hydrogen concentration, delay the crack initiation and further arrest the crack propagation. Moreover, a 23% reduction in hydrogen embrittlement susceptibility of QLT specimens was achieved by comparing with quenching-tempering (QT)specimens. However, the interface of RA and matrix was a preferred site for crack initiation.
更多
查看译文
关键词
Multi-alloyed steel,Lamellarization,Reversed austenite,Hydrogen embrittlement,Crack initiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要