Guanine-derived core-shell FeCo alloy confined in graphene-like N-doped carbon as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries

Journal of Alloys and Compounds(2024)

引用 0|浏览0
暂无评分
摘要
Maximization the synergistic effect of each component in transition metal-carbon complexes is expected to improve the bifunctional oxygen electrocatalysis for rechargeable Zn-air batteries but is still challenging. Herein, nucleobase guanine is employed as a supramolecular precursor to generate the core (FeCo alloy)-shell (carbon) structure embedded in ultrathin graphene-like nitrogen-doped carbon nanosheets (FeCo@NCNSs) via a confinement pyrolysis strategy. Thanks to the generated core-shell structure and bimetallic synergistic effect, the as-prepared FeCo@NCNSs exhibits excellent electrochemical performance in both oxygen reduction reaction and oxygen evolution reaction. As a result, when served as the bifunctional air electrode for a practical Zn-air battery, FeCo@NCNSs exhibits a higher open-circuit voltage (1.553V) and peak power density (197.30mWcm-2), as well as the greatly improved long-term cyclic stability compared to the noble metal benchmarks. This work provides a promising approach to integrate various active sites for bifunctional oxygen electrocatalysis and inspires the exploration of simple but efficient electrocatalysts for energy storage and conversion.
更多
查看译文
关键词
Guanine,FeCo alloy,Core-shell structure,Bifunctional oxygen electrocatalysis,Rechargeable Zn-air batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要