Integrating electro-Fenton and microalgae for the sustainable management of real food processing wastewater

Dulce María Arias, Patricia Olvera Vargas, Andrea Noemí Vidal Sánchez,Hugo Olvera-Vargas

Chemosphere(2024)

引用 0|浏览0
暂无评分
摘要
The present study demonstrates, for the first time, the feasibility of a two-step process consisting of Electro-Fenton (EF) followed by microalgae to treat highly loaded real food processing wastewater along with resource recovery. In the first step, EF with a carbon felt cathode and Ti/RuO2-IrO2 anode was applied at different current densities (3.16 mA cm-2, 4.74 mA cm-2 and 6.32 mA cm-2) to decrease the amount of organic matter and turbidity and enhance biodegradability. In the second step, the EF effluents were submitted to microalgal treatment for 15 days using a mixed culture dominated by Scenedesmus sp., Chlorosarcinopsis sp., and Coelastrum sp. Results showed that current density impacted the amount of COD removed by EF, achieving the highest COD removal of 77.5% at 6.32 mA cm-2 with >95% and 74.3% of TSS and PO43- removal, respectively. With respect to microalgae, the highest COD removal of 85% was obtained by the culture in the EF effluent treated at 6.32 mA cm-2. Remarkably, not only 85% of the remaining organic matter was removed by microalgae, but also the totality of inorganic N and P compounds, as well as 65% of the Fe catalyst that was left after EF. The removal of inorganic species also demonstrates the high complementarity of both processes, since EF does not have the capacity to remove such compounds, while microalgae do not grow in the raw wastewater. Furthermore, a maximum of 0.8 g L-1 of biomass was produced after cultivation, with an accumulation of 32.2% of carbohydrates and 25.9% of lipids. The implementation of the two processes represents a promising sustainable approach for the management of industrial effluents, incorporating EF in a water and nutrient recycling system to produce biomass that could be valorized into clean fuels.
更多
查看译文
关键词
advanced oxidation processes,electro-Fenton,food-processing wastewater,microalgal biomass,wastewater valorization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要