Twin prime editing mediated exon skipping/reinsertion for restored collagen VII expression in recessive dystrophic epidermolysis bullosa

Journal of Investigative Dermatology(2024)

引用 0|浏览0
暂无评分
摘要
Gene editing nucleases, base editors, and prime editors are potential locus specific genetic treatment strategies for recessive dystrophic epidermolysis bullosa (RDEB); however, many RDEB COL7A1 mutations are unique, making the development of personalized editing reagents challenging. 270 of the ∼320 COL7A1 EB mutations reside in exons that can be skipped, and antisense oligonucleotides (ASO) and gene editing nucleases have been used to create in-frame deletions. ASOs are transient and nucleases generate deleterious double stranded DNA breaks (DSB) and uncontrolled mixtures of allele products. We developed a twin prime editing (twinPE) strategy using the PEmax and recently evolved PE6 prime editors and dual prime editing guide RNAs flanking COL7A1 exon five. Prime editing-mediated deletion of exon 5 with a homozygous premature stop codon was achieved in RDEB fibroblasts, keratinocytes, and iPSC with minimal DSBs, and collagen type VII (C7) protein was restored. TwinPE can replace the target exon with recombinase attachment sequences, and we exploited this to re-insert a normal copy of exon 5 using the Bxb1 recombinase. These findings demonstrate that twinPE can facilitate locus-specific, predictable, in-frame deletions and sequence replacement with few DSBs as a strategy that may enable a single therapeutic agent to treat multiple RDEB patient cohorts.
更多
查看译文
关键词
Prime editing,dystrophic epidermolysis bullosa
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要