Sign-Alternating Thermoelectric Quantum Oscillations and Insulating Landau Levels in Monolayer WTe2

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
The detection of Landau-level-like energy structures near the chemical potential of an insulator is essential to the search for a class of correlated electronic matter hosting charge-neutral fermions and Fermi surfaces, a long-proposed concept that remains elusive experimentally. Here we introduce and demonstrate that the magneto-thermoelectric response of a quantum insulator can reveal critical information not available via other approaches. We report large quantum oscillations (QOs) in the Seebeck response of the hole-doped insulating state of monolayer tungsten ditelluride (WTe2) in magnetic fields. The QOs remarkably undergo sign-changes as the field is swept, mimicking those in metals with Landau quantization. The sign-change in the thermoelectric response directly implies the presence of a field-induced Landau-level-like structure at the chemical potential of the insulator. Our results reinforce WTe2 as a platform for investigating insulating Landau levels and mobile neutral fermions in two-dimensional insulators.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要