Evaluation of eco-environmental quality and analysis of driving forces in the yellow river delta based on improved remote sensing ecological indices

Dongling Ma,Qingji Huang,Qian Zhang,Qian Wang, Hailong Xu, Yingwei Yan

Stochastic Environmental Research and Risk Assessment(2024)

引用 0|浏览0
暂无评分
摘要
The ecological environment of the Yellow River Delta is undergoing serious degradation due to the pressures of economic development and population growth. To improve and protect the ecological environment, it is crucial to accurately assess and monitor its eco-environmental quality. With consideration of the characteristics of terrestrial salinization in the region and the need for long-term ecological monitoring, we first utilized Google Earth Engine (GEE) to construct the Improved Remote Sensing Ecological Index (IRSEI). The IRSEI is based on the Remote Sensing Ecological Index (RSEI), which consists of the Normalized Difference Vegetation Index (NDVI), WET, Land Surface Temperature (LST), and Normalized Difference Built-Up and Soil Index (NDBSI), as well as the Net Primary Productivity (NPP) index. The entropy weighting method was employed to construct the IRSEI for assessing the eco-environmental quality of the Yellow River Delta. The validity of the index was verified through image entropy and contrast assessment. We then employed the Hurst exponent, Sen's slope estimation, and Coefficient of Variation (CV) to calculate the range of variation of the IRSEI in the Yellow River Delta over a 20-year period to analyze the spatio-temporal evolution of the ecological quality and its distribution pattern. Furthermore, we conducted a comprehensive analysis combining the Geographically and Temporally Weighted Regression (GTWR) model and Geodetector to understand the influence of drivers such as topography, soil, and climate on the IRSEI, considering both the temporal and spatial dimensions. The results indicate that: (1) The proposed IRSEI demonstrates higher reliability, adaptability, and sensitivity compared to RSEI in monitoring the eco-environmental quality of the Yellow River Delta. (2) From 2000 to 2020, the eco-environmental quality of the Yellow River Delta remained generally stable, with a spatial distribution resembling a "Y" shape, showing significant improvement, particularly in Lijin County and its surrounding areas. However, the middle and eastern estuary exhibited a declining trend in eco-environmental quality. (3) The impact of driving factors on the eco-environmental quality varied across the four subordinate regions of the Yellow River Delta, indicating spatial heterogeneity. Factors such as FVC, Soil, LST, JS, and Srad significantly influenced and explained the spatial differentiation of eco-environmental quality in the region. The proposed IRSEI demonstrates better monitoring capabilities in the Yellow River Delta compared to RSEI, providing a scientific basis for land use planning and ecological protection in the area.
更多
查看译文
关键词
Improved remote sensing ecological index (IRSEI),Eco-environmental quality,Geographically and temporally weighted regression (GTWR) model,Geodetector,Yellow river delta
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要