Nickel–Nitrogen–Carbon (Ni–N–C) Electrocatalysts Toward CO2 electroreduction to CO: Advances, Optimizations, Challenges, and Prospects

ENERGY & ENVIRONMENTAL MATERIALS(2024)

引用 0|浏览1
暂无评分
摘要
Electrocatalytic reduction of CO2 into high energy‐density fuels and value‐added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems. Constructing electrocatalyst with high activity, selectivity, stability, and low cost is really matter to realize industrial application of electrocatalytic CO2 reduction (ECR). Metal–nitrogen–carbon (M–N–C), especially Ni–N–C, display excellent performance, such as nearly 100% CO selectivity, high current density, outstanding tolerance, etc., which is considered to possess broad application prospects. Based on the current research status, starting from the mechanism of ECR and the existence form of Ni active species, the latest research progress of Ni–N–C electrocatalysts in CO2 electroreduction is systematically summarized. An overview is emphatically interpreted on the regulatory strategies for activity optimization over Ni–N–C, including N coordination modulation, vacancy defects construction, morphology design, surface modification, heteroatom activation, and bimetallic cooperation. Finally, some urgent problems and future prospects on designing Ni–N–C catalysts for ECR are discussed. This review aims to provide the guidance for the design and development of Ni–N–C catalysts with practical application.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要