Engineered g-C3N4/MnO2 Nanocomposite for Exceptional Photocatalytic Methylene Blue Degradation and Robust Antibacterial Impact

Journal of Cluster Science(2024)

引用 0|浏览2
暂无评分
摘要
In this work, we reported the simple one-step wet impregnation method of g-C3N4/MnO2 nanocomposites aimed at improving the photocatalytic degradation efficiency of methylene blue dye. The synthesized catalysts underwent comprehensive characterization using various techniques such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) to investigate their physicochemical properties. Their photocatalytic performance was evaluated by the degradation of methylene blue (MB) dye under visible light irradiation. Consequently, the MnO2/g-C3N4 nanocomposite demonstrates superior photocatalytic degradation performance compared to both bare MnO2 and g-C3N4. This enhancement is attributed to the improved efficiency of charge carrier separation and interfacial charge transfer within the nanocomposite structure. The degradation efficiency of MnO2/g-C3N4 nanocomposite was found 89
更多
查看译文
关键词
Wet impregnation method,Methylene blue,MnO2/g-C3N4,Recycle,Antibacterial activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要