Electrical power output potential of different solar photovoltaic systems in Tanzania

Christopher Thomas Warburg,Tatiana Pogrebnaya,Thomas Kivevele

International Journal of Renewable Energy Development(2024)

引用 0|浏览0
暂无评分
摘要
This study examines the photovoltaic (PV) energy output and levelized cost of energy (LCOE) in seven regions of Tanzania across five different tilt adjustments of 1 MW PV systems. The one-diode model equations and the PVsyst 7.2 software were used in the simulation. The results reveal variations in energy output and LCOE among the regions and tilt adjustments indicating a strong correlation between PV energy output and solar irradiance incident on the PV panel. For horizontal mounting, the annual energy output ranges from 1229 MWh/year in Kilimanjaro to 1977 MWh/year in Iringa. Among the three optimal tilt adjustments, annually, monthly and seasonal, the last two are predicted to yield larger energy outputs, whereas the two axis tracking configuration consistently provides the maximal energy output in all regions, ranging from 1533 MWh/year in Kilimanjaro to 2762 MWh/year in Iringa. The LCOE analysis demonstrates the cost-effectiveness of solar PV systems compared to grid-connected and isolated mini-grid tariffs. The LCOE values across the regions and tilt adjustments range from $0.07/kWh to $0.16/kWh. In comparison, the tariff for grid-connected solar PV is $0.165/kWh, while for isolated mini-grids; it is $0.181/kWh. The monthly optimal tilt configuration proves to be the most cost-effective option for energy generation in multiple regions, as it consistently exhibits the lowest energy cost compared to the other four configurations. The results provide valuable insights into the performance and economic feasibility of various system setups. Through meticulous simulation and data analysis, we have gained a comprehensive understanding of the factors influencing energy generation and costs in the context of solar photovoltaic systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要