A novel design of copper selenide/zinc selenide/Nitrogen-doped carbon derived from MOF for sulfadiazine adsorption: Performance and mechanism

Donglou Ren, Bin Zhu, Jun Xiong,Kai Huang,Muzhi Cai, Cong Liu, Xiaojing Bai,Tao Liu,Xianghua Zhang,Bingsuo Zou

Journal of Colloid and Interface Science(2024)

引用 0|浏览0
暂无评分
摘要
Herein, a novel copper selenide/zinc selenide/Nitrogen-doped carbon (Cu2Se/ZnSe/NC) sphere was constructed via a combination of cation exchange, selenization and carbonization approaches with zinc-based metal–organic frameworks (ZIF-8) as precursor for sulfadiazine (SDZ) removal. Compared with the ZnSe/NC, the defective Cu2Se/ZnSe interface in the optimizing Cu-ZnSe/NC2 sample caused a remarkably improved adsorption performance. Notably, the adsorption capacity of 129.32 mg/g was better than that of mostly reported adsorbents for SDZ. And the adsorption referred to multiple-layer physical–chemical process that was spontaneous and exothermic. Besides, the Cu-ZnSe/NC2 displayed fast adsorption equilibrium of about 20 min and significant anti-interference ability for inorganic ions. Specially, the adsorbent possessed excellent stability and reusability, which could also be applied for rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) dyes removal. Ultimately, the charge redistribution of Cu2Se/ZnSe interface greatly contributes the superior adsorption performance for SDZ, in which electrostatic attraction occupied extremely crucial status as compared to π-π electron-donor–acceptor (π-π EDA) interaction and hydrogen bonding (H-bonding), as revealed by the density function theory (DFT) calculations and experimental results. This study can provide a guideline for design of high-efficient adsorbent with interfacial charge redistribution.
更多
查看译文
关键词
Bimetallic selenides/carbon composites,Sulfadiazine,Adsorption,Heterojunction,DFT calculations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要